Maintenance troubleshooting can be both an art and a science. A common problem is that, while art can be beautiful, it isn’t known for its efficiency. When taken to the next level, maintenance troubleshooting can ditch the trial-and-error moniker and become a purely scientific endeavor. This helps maintenance technicians find the right problems and solutions more quickly. When troubleshooting is done correctly, your whole maintenance operation can overcome backlog, lost production, and compliance issues much more efficiently.
In this troubleshooting guide, we’ll take a look at what it actually is, why it matters to maintenance professionals, and how your team can fine-tune its approach.
What is maintenance troubleshooting?
Systems break down—that’s just a fact of life. Whether it’s a conveyer belt or an industrial drill, we’ve all run across a piece of equipment that is unresponsive, faulty, or acting abnormally for seemingly no reason at all. It can be downright frustrating.
Maintenance troubleshooting is the process of identifying what is wrong with these faulty components and systems when the problem is not immediately obvious. Maintenance troubleshooting usually follows a systematic, four-step approach; identify the problem, plan a response, test the solution, and resolve the problem. Steps one to three are often repeated multiple times before a resolution is reached.
Identify the problem
Plan a response
Test the solution
Repeat until problem is resolved
Think about it this way: When a conveyor belt breaks down, you may try a few different methods to fix it. First, you identify which part of the conveyor belt isn’t working. Once you’ve identified the problem area, you plan a response and test it, such as realigning or lubricating a part. If this fails to fix the problem, you might replace the part, which makes the conveyor belt work again. This is troubleshooting.
How is maintenance troubleshooting usually done?
Stop us if you’ve heard this story before. An asset breaks down and no one knows why. You talk to the operator, read some manuals, and check your notes about the asset. You try a couple of things to get the machine up and working again with no luck. Before you can try a third or fourth possible solution, you get called away to another emergency, with the asset still out of commission.
This is often how the process happens when performing maintenance troubleshooting, especially when a facility relies on paper records or Excel spreadsheets. The process is based on collecting as much information as possible from as many sources as possible to identify the most likely cause of the unexpected breakdown. You can never go wrong when you gather information, but it’s the way that information is gathered that can turn troubleshooting from a necessity to a nightmare.
Why does maintenance troubleshooting matter?
Unexpected equipment failure is the entire reason maintenance troubleshooting exists. If assets never broke down without any clear signs of imminent failure, there would be no need to troubleshoot the problem. But we know that’s just not the case.
Machinery failure doesn’t always follow a predictable pattern. Yes, maintenance teams can use preventive maintenance and condition-based maintenance to reduce the likelihood of unplanned downtime. However, you can never eliminate it entirely. What you can do is put processes in place to reduce failure as much as possible and fix it as soon as possible when it does occur. This is where strong maintenance troubleshooting techniques come in handy.
Because troubleshooting will always be part of the maintenance equation, humans will also always have a role. Maintenance technology does not erase the need for a human touch in troubleshooting; it simply makes the process much more efficient. When troubleshooting isn’t refined, it could lead to time wasted tracking down information, a substantial loss of production, an unsafe working environment, and more frequent failures. In short, knowing some maintenance troubleshooting techniques could be the difference between an overwhelming backlog and a stable maintenance program.
Maintenance troubleshooting tips
The following are just a few ways your operation can improve its troubleshooting techniques to conquer chaos and take control of its maintenance.
1. Quantify asset performance and understand how to use the results
It probably goes without saying, but the more deeply you know an asset, the better equipped you’ll be to diagnose a problem. Years of working with a certain asset can help you recognize when it’s not working quite right. But exceptional troubleshooting isn’t just about knowing the normal sounds, speeds, or odours of a particular machine. Instead, it’s about knowing how to analyze asset performance at a deeper level, which is where advanced reporting factors in.
When operators and technicians rely solely on their own past experience with a piece of equipment, it leaves them with huge gaps in knowledge that hurt the maintenance troubleshooting process. For example, it leaves too much room for recency bias to affect decision-making, which means that technicians are most likely to try the last thing that fixed a particular problem without considering other options or delving further into the root cause. Also, if maintenance troubleshooting relies on the proprietary knowledge of a few technicians, it means repairs will have to wait until those particular maintenance personnel are available.
Maintenance staff should have the know-how to conduct an in-depth analysis of an asset’s performance. For example, technicians should understand how to run reports and understand KPIs for critical equipment, such as mean time between failure and overall equipment effectiveness. If using condition-based maintenance, the maintenance team should also know the P-F curve for each asset and what different sensor readings mean. When technicians are equipped with a deeper understanding of an asset, it will be easier for them to pinpoint where a problem occurred and how to fix it, both in the short and long-term.
2. Create in-depth asset histories
Information is the fuel that powers exceptional maintenance troubleshooting for maintenance. Knowing how a particular asset has worked and failed for hundreds of others is a good place to start a repair. That’s why manuals are a useful tool when implementing troubleshooting maintenance techniques. However, each asset, facility, and operation is different, which means asset machine failure doesn’t always follow the script. Detailed notes on an asset’s history can open up a dead end and lead you to a solution much more quickly.
A detailed asset history can give you an edge in maintenance troubleshooting in a variety of ways. It offers a simple method for cross-referencing symptoms of the current issue with elements of past problems. For example, a technician can see if a certain type of material was being handled by a machine or if there were any early warning signs identified for a previous failure. The more a present situation aligns with a past scenario, the more likely it is to need the same fix. Solutions can be prioritized this way, leading to fewer misses, less downtime, fewer unnecessary spare parts being used, and more.
When troubleshooting is done correctly, your whole maintenance operation can overcome backlog, lost production, and compliance issues much more efficiently.
When creating detailed asset histories to help with maintenance troubleshooting (as well as preventive maintenance), it’s important to include as much information as possible. Make sure to record the time and dates of any notable actions taken on an asset or piece of equipment. This can include breakdowns, PMs, inspections, part replacement, production schedules, and abnormal behavior, such as smoke or unusual sounds. Next, document the steps taken during maintenance, including PMs or repairs. Lastly, highlight the successful solution and what was needed to accomplish it, such as necessary parts, labor and safety equipment. Make sure to add any relevant metrics and reports to the asset history as well.
One way to capture all this information in one place is to create a well-built equipment maintenance log, like this one:
3. Use root cause analysis and failure codes
Effective maintenance troubleshooting starts with eliminating ambiguity and short-term solutions. Finding the root of an issue quickly, solving it effectively and ensuring it stays solved is a winning formula. Root cause analysis and failure codes are a couple of tools that will help you achieve this goal.
Root cause analysis is a maintenance troubleshooting technique that allows you to pinpoint the reason behind a failure. The method consists of asking “why” until you get to the heart of the problem. For example:
Why did the equipment fail?: Because a bearing wore out
Why did the bearing wear out?: Because a coupling was misaligned
Why was the coupling misaligned?: Because it was not serviced recently.
Why was the coupling not serviced?: Because maintenance was not scheduled.
Why was maintenance not scheduled?: Because we weren’t sure how often it should be scheduled.
This process has two benefits when conducting maintenance troubleshooting for maintenance. First, it allows you to identify the immediate cause of failure and fix it quickly. Second, it leads you to the core of the issue and a long-term solution. In the example above, it’s clear a better preventive maintenance program is required to improve asset management and reduce unplanned downtime.
Failure codes provide a consistent method to describe why an asset failed. Failure codes are built on three actions: Listing all possible problems, all possible causes, and all possible solutions. This process records key aspects of a failure according to predefined categories, like misalignment or corrosion.
Failure codes are useful when maintenance troubleshooting because technicians can immediately see common failure codes, determine the best solution, and implement it quickly. Failure codes can also be used to uncover a common problem among a group of assets and determine a long-term solution.
4. Build detailed task lists
Exceptional maintenance troubleshooting requires solid planning and foresight. Clear processes provide a blueprint for technicians so they can quickly identify problems and implement more effective solutions. Creating detailed task lists is one way to bolster your planning and avoid headaches down the road. This could also be incorporated into routine maintenance.
A task list outlines a series of tasks that need to be completed to finish a larger job. They ensure crucial steps aren’t missed when performing inspections, audits or PMs. For example, the larger job may be conducting a routine inspection of your facility’s defibrillators. This job is broken down into a list of smaller tasks, such as “Verify battery installation,” and “Inspect exterior components for cracks.”
Maintenance technology does not erase the need for a human touch in troubleshooting; it simply makes the process much more efficient.
Detailed task lists are extremely important when conducting maintenance troubleshooting. They act as a guide when testing possible solutions so technicians can either fix the issue or disqualify a diagnosis as quickly as possible. The more explicit the task list, the more thorough the job and the less likely a technician is to make a mistake. Comprehensive task lists can also offer valuable data when failure occurs. They provide insight into the type of work recently done on an asset so you can determine whether any corrective actions were missed and if this was the source of the problem.
There are a few best practices for building detailed task lists. First, include all individual actions that make up a task. For example, instead of instructing someone to “Inspect the cooling fan,” include the steps that comprise that inspection, such as “Check for any visible cracks,” and “Inspect for loose parts.” Organize all steps in the order they should be done. Lastly, include any additional information that may be helpful in completing the tasks, including necessary supplies, resources (ie. manuals), and PPE.
5. Make additional information accessible
We’ve said it before and we’ll say it again; great maintenance troubleshooting techniques are often the result of great information. However, if that information is difficult to access, you will lose any advantage it provides. That is why it is crucial for your operation to not only create a large resource center, but to also make it highly accessible. This will elevate your maintenance troubleshooting abilities and get your assets back online faster when unplanned downtime occurs.
Let’s start with the elements of a great information hub. We’ve talked about the importance of reports, asset histories, failure codes and task lists when performing a troubleshooting method. Some other key resources include diagrams, standard operating procedures (SOPs), training videos, and manuals. These should all be included and organized by asset. If a technician hits a dead-end a troubleshooting procedure, these tools can offer a solution that may have been missed in the initial analysis.
Now that you’ve gathered all your documents together, it’s time to make them easily accessible to the whole maintenance team. If resources are trapped in a file cabinet, on a spreadsheet, or in a single person’s mind, they don’t do a lot of good for the technician. They can be lost, misplaced and hard to find—not to mention the inefficiency involved with needing to walk from an asset to the office just to grab a manual. One way to get around this obstacle is to create a digital knowledge hub with maintenance software. By making all your resources available through a mobile device, technicians can access any tool they need to troubleshoot a problem. Instead of sifting through paper files to find an asset history or diagram, they can access that same information anywhere, anytime.
Using CMMS software for maintenance troubleshooting
If it sounds like a lot of work to gather, organize, analyze and circulate all the information needed to be successful at maintenance troubleshooting, you’re not wrong. Without the proper tools, this process can be a heavy lift for overwhelmed maintenance teams. Maintenance software is one tool that can help ease the load every step of the way. A digital platform, such as a CMMS, takes care of crunching the numbers, organizing data and making it available wherever and whenever, so you can focus on using that information to make great decisions and troubleshoot more effectively.
For example, when building a detailed asset history, it’s important to document every encounter with a piece of equipment. This is a lot of work for a technician rushing from one job to another and difficult to keep track of after the fact. An investment in maintenance software will help you navigate these roadblocks. It does this by allowing technicians to use a predetermined set of questions to make and retrieve notes in real-time with a few clicks.
The same goes for failure codes. The key to using them effectively is proper organization and accessibility. Without those two key ingredients, failure codes become more of a hindrance than a help. One way to accomplish this is to use maintenance software. A digital platform can organize failure codes better than any filing cabinet or Excel spreadsheet and make it easy for technicians to quickly sort them and identify the relevant ones from the site of the breakdown.
The bottom line
Troubleshooting will always exist in maintenance. You will never be 100 percent sure 100 percent of the time when diagnosing the cause of failure. What you can do is take steps to utilize maintenance troubleshooting techniques to ensure equipment is repaired quickly and effectively. By combining a good understanding of maintenance metrics with detailed asset histories, failure codes, task lists, and other asset resources, and making all this information accessible, you can move your troubleshooting beyond trial and error to a more systematic approach.
“Cloud, collaboration, and connectivity: How can seamless communication be delivered?“, M-Files CEO Antti Nivala took on some of the toughest issues facing businesses in our time of digital transformation.
For many, the new ways of working are freeing, but there are unanswered questions: How do businesses communicate seamlessly in a work-from-anywhere world? What does a good office environment look like in the cloud era? How can you empower your employees when they’re working in drastically different time zones?
According to Antti, getting employees on the same page is about more than just sending them a laptop. “Even in places where the technological gaps have been filled, there needs to be a cultural change,” he said. “Now that many people, especially those at knowledge work companies are independently working at a time and place of their choosing, we have to make information available in a self-serve, on-demand way.”
Collaboration off the clock
The best workplace for your business may not be a physical place at all. You may not even work at the same time. “When we free people from the limits or restrictions of a place, they also begin making choices of when they work. Synchronous ways of communication and collaboration don’t necessarily work anymore,” Antti said. “We have to accept new ways of asynchronous collaboration and work together differently than when we were all gathering together in a meeting room.”
One way that companies can get more done in an “always-on” world is by unlocking information and empowering their employees to access it when they need it.
“Maybe it’s a cultural thing that companies, managers, and leaders tend to keep information to themselves,” Antti said. “Unless there is a very specific confidentiality reason why it shouldn’t be, I’m an advocate of the thinking that most of the information should be available and accessible, from a technical and access rights point of view to pretty much every employee in the company.”
Lifelong learning
Another way to optimize processes and make your business more dynamic is to provide access to learning possibilities. “For us as leaders, it’s about enabling and empowering employees to be successful.” According to Antti, “our role is to provide ways for them to develop their skills.”
During the panel, Antti explained that existing platforms like LinkedIn Learning offer a lot of value to your employees’ skill set. However, you know your business best. Beyond creating comprehensive onboarding processes and information libraries, companies should offer their team members in-house learning and self-development courses that can be taken when and where they want.
“If you can provide extensive learning and self-development opportunities, I think you are doing a great job in enabling your employees to not only do what you hired them to do but to elevate themselves to the next level.”
Want to build a great preventive maintenance program, but don’t know where to start? Here are 8 tips to set you up for success.
What is a preventive maintenance program?
A preventive maintenance program is a series of processes, guidelines, and tools for conducting regular and routine maintenance on equipment and assets to keep them in good condition so as to avoid failure and costly unplanned downtime.
Preventive maintenance and planning fit together perfectly, just like salt and pepper, Batman and Robin, and movies and popcorn. That’s because in order for a preventive maintenance program to succeed, it requires a solid blueprint.
For facilities looking to break out of a reactive maintenance rut, a preventive maintenance plan can do wonders. Having a roadmap to preventive maintenance allows your operation to conquer unplanned downtime while staving off the temptation to fall back into a reactive approach.
A PM plan makes everything clearer so the path to reliability is obstacle-free. Goals and responsibilities are defined, timelines are understood and necessary resources are accounted for. Everyone knows what success looks like and how to sustain it.
What is preventive maintenance?
Preventive maintenance is proactive maintenance that is regularly performed on a piece of equipment in working condition to prevent unplanned failure or breakdown maintenance. Preventive maintenance is triggered for an asset based on time or usage. For example, if an asset has operated for 100 hours, a preventive maintenance work order will be automatically triggered. The goal is to increase asset reliability, reduce downtime and maximize the impact of costs and labor.
For facilities looking to break out of a reactive maintenance rut, a preventive maintenance plan can do wonders. Having a roadmap allows your operation to conquer unplanned downtime while staving off the temptation to fall back into a reactive approach.
Transitioning from predominantly reactive maintenance activity to a mostly preventive one takes time, dedication, resources and, most importantly, a plan. Achieving a successful preventive maintenance program means creating a preventive maintenance schedule and sticking to it. It means a reduction in unplanned downtime, backlog, miscommunication, accidents and the corrective maintenance costs associated with each. At the end of the day, preventive maintenance will help you conquer inefficiency and improve your maintenance program from top to bottom.
What should a preventive maintenance plan include?
A preventive maintenance plan should include eight steps at its foundation:
Establish and prioritize goals
Create and measure KPIs
Get stakeholder buy-in
Use the right technology/software
Set up PM triggers
Train maintenance workers on how to implement the preventive maintenance plan
Build a preventive maintenance checklist
Fine-tune your plan based on results
We’ll take you through each step in detail.
How to create a preventive maintenance program in eight steps
Each and every facility is different, with different goals, assets and resources. That’s why there is no one-size-fits-all approach to creating a preventive maintenance program. However, by using these eight important elements, you can build an effective blueprint for success. Following this template for a preventive maintenance plan will go a long way to making your operation more efficient and sustainable.
1. Establish and prioritize goals
The first step in building a successful preventive maintenance program is to sit down and lay out what you want to achieve. Every facility has different goals and those goals influence all future decisions. Do you want to reduce downtime? Increase reliability? Cut costs? Think about the reasons for wanting to create a structured PM program and write them down.
Next, it’s time to prioritize your goals. Let’s face it, you’re always busy, and implementing a preventive maintenance plan is another huge project to add to your to-do list. With everything that’s going on, it’s nearly impossible to go full steam ahead on all your goals. By prioritizing, you know where to focus your attention and resources first when establishing a blueprint for preventive maintenance. When those tasks are firmly underway, you can begin the next step in your plan.
Once you know which KPIs you’ll be using to define the success, the next step is to create a framework for consistently measuring these metrics. Stats are only valuable if you are consistently using them to improve the preventive maintenance plan. It’s crucial to build processes and procedures that ensure data is collected, analyzed, understood and actioned on a regular basis. This way, you will know if you are meeting your goals and where your strengths and weaknesses lie.
3. Obtain buy-in from stakeholders
It doesn’t matter how much time you’ve put into your preventive maintenance program if you don’t have your entire team on board. Total buy-in is crucial as an effective PM strategy requires everyone to chip in, from a maintenance manager or technician who must input data to a reliability engineer who reads that data and makes decisions based on it. What seem like small details add up to make a big difference. That’s why establishing the concept of total productive maintenance is so important to creating a strategy that works.
Getting buy-in from all stakeholders for a preventive maintenance plan includes having discussions about goals, skill sets, needs, resources and more with each member of the team. This will give you a holistic view of how an increase in scheduled maintenance will affect each person and the team, how people might react to change and what is necessary to execute your strategy with fewer snags.
4. Leverage the right technology
Technology is one of the most important ingredients for an effective PM strategy. Leveraging a digital solution allows you to efficiently arrange all the smaller preventive maintenance tasks required for your facility to embrace a PM mindset, such as scheduling, inventory maintenance management, reporting and organizing work orders. If your facility operates on a legacy system, such as pen and paper or Excel, now is the time to plan for a transition to a digital solution.
There are several factors that must be considered when choosing the right technology for a preventive maintenance program, including the skillset of your team, budget, asset capabilities, team preference, data security and more. One of the most important things to remember when looking for preventive maintenance technology, such as a CMMS, is ease of use. If a system is too hard to understand and use properly, it will not be used effectively and all the time and money invested in the solution will be for naught.
5. Make sure your PM triggers are accurate
Because all effective PMs are built on accurate triggers, this is a crucial step in building a preventive maintenance plan. Matching maintenance tasks with the right trigger will help your operation flow efficiently and will ensure assets are as reliable as possible. These triggers should also be known by all members of the maintenance team so no maintenance task falls through the cracks. Automated scheduling and mobile notifications are two tools that make this simple to do.
It doesn’t matter how much time you’ve put into your preventive maintenance program if you don’t have your entire team on board. Total buy-in is crucial as an effective PM strategy requires everyone to chip in, from technicians to reliability engineers.
When defining a preventive maintenance trigger for an asset, it’s important to look at a few variables. This includes the manufacturers recommended guidelines, the performance history of the asset, how critical the asset is to production, the cost of repair vs. maintenance and the projected future use of the asset. When you take all these elements into account, you should have a good idea of when to trigger maintenance for a particular piece of equipment. This number should be fine-tuned moving forward to optimize your preventive maintenance.
6. Train and implement
At this point in your quest for an effective preventive maintenance program, you probably know what needs to be done and how it needs to be done. Your team, on the other hand, probably does not. It’s important to remember this and create a training strategy so everyone can get up to speed on proper equipment maintenance. Team members should be trained on any new technology as well as any processes and procedures that come with a shift to preventive maintenance, such as prioritizing work orders, creating failure codes, and accessing documents digitally.
The obvious next step is to implement your preventive maintenance plan. If preventive maintenance is something completely new for your team, you might consider a pilot program at one site, one section of your facility or a few particular assets. This way, you can help your team adjust to a new way of doing things while working out the kinks in your PM program.
7. Build a preventive maintenance checklist to analyze results
Once your preventive maintenance plan is in motion, it’s important to prioritize inspection and keep an eye on the numbers. It is essential to have a preventive maintenance checklist that helps you to consistently track KPIs, such as mean time to repair, planned maintenance percentage and mean time between failures. Analyzing these stats and comparing them to pre-plan numbers should give you a good idea of how your program is impacting the efficiency of your maintenance operation.
Check these metrics against the benchmarks you established when you were first building your preventive maintenance processes. This will help you identify where you are hitting your goals and where you aren’t so you can target issues in your program before they get out of hand. Take advantage of data capture tools to make tracking and analysis easy, quick and actionable. For example, there are many automated reporting templates you can use that are commonly available in maintenance management programs.
8. Fine-tune plan
This is one task you should never feel is complete. Your preventive maintenance program should always be under construction as you continually fine-tune, improve, fill in the gaps and fortify procedures that are working well. Use the data you capture through sensors, work order notes and digital reports to see where strengths and weaknesses lie. Uncover opportunities to improve and focus on embracing preventive maintenance wherever possible in your operation.
One crucial element in this phase is to include all stakeholders, such as technicians, operations, reliability engineers, etc., in the process of improvement. Digital profiles and forums for team members make it easy to schedule a time to get feedback, work through problems and review issues that have been flagged while you smooth out any wrinkles in your plan.
The bottom line on building a preventive maintenance program
Creating a successful, sustainable, and effective preventive maintenance program doesn’t happen overnight. It takes a lot of planning, but it’s worth it when you achieve the many benefits. It’s important to build a sturdy strategy by identifying goals, creating proper KPIs and triggers, discussing the plan with stakeholders, leveraging the right technology and conducting training for regular maintenance. It takes consistent analysis and fine-tuning to ensure all your careful planning doesn’t go to waste. And just remember, a well-oiled preventive maintenance program is not an unattainable dream for maintenance operations; it’s a viable option for all. And once you have a solid program in place, there’s always room for growth, like expanding into predictive maintenance.
If you still think that low code is only used to build simple applications, you have a major misconception. There is so much an organization can do with the power of a low code application development platform. The tool is ideal for highly scalable applications, the kind that can support your organization’s digital transformation initiatives.
A study by Forrester anticipates the low code development market to exceed $21 billion by 2022 and experience a 50% annual growth rate in the next five years. This proves that a low code application development is definitely not a fad and is here to stay.
Low code application development is not new. What’s new is that leading enterprises today have realized that they can go the low code way for faster innovation. Low code has become the go-to choice for its visual development environment, point-and-click user interfaces, drag-and-drop control, automation capabilities, and workflow management.
But do you know all that you can build with a low code platform?
Honestly, a whole lot! Professional IT developers and business users can collaborate on numerous projects with a low code platform.
Here’s a glimpse into the 4 use cases of low code application development platform:
Content-driven workflow applications
Low code platforms can enable businesses to automate their end-to-end content-centric processes/applications–such as customer onboarding, claims processing, and online account opening–ensuring that the right content is available at the right time to the right people at appropriate stages of the process.
Mobile app development
Businesses can rapidly design and develop responsive mobile applications with point-and-click and drag-and-drop functionalities in a well-abstracted low code application development platform.
Customer-facing and customer support portals
With low code, an organization can develop customer-facing portals such as customer self-service or agent portals that can easily be integrated with existing systems. Businesses can also leverage a template-based user interface development interface to design these portals for faster, simpler, and more efficient ways of interacting with the customer in real-time.
Modernization of legacy systems
Low code can help enterprises extend their legacy systems. By leveraging the low code application development platform, businesses can support core systems and develop applications that can easily integrate into the existing system.
These are just a few of the numerous use cases on how low code application development can drive up productivity, revenue, and customer experience. To learn more about how low code can help your enterprise, read the case study on how National Commercial Bank Jamaica Limited leveraged a low code application platform to centralize its loan underwriting service and decrease turn-around time for loan applications.
As a business leader, you must always look for new and innovative ways to bring speed and agility into your processes. Lengthy turnaround times are no longer an option, and a low code process automation software ensures a flexible and agile operating environment that can quickly respond to dynamic market requirements.
Low Code to the Rescue
A low code process automation software leverages user-friendly capabilities, including a modeling-driven environment, point-and-click configurability, and graphical interface tool, thereby enabling enterprises to minimize manual coding to develop and deploy business applications rapidly. The software facilitates end-to-end automation of customer journeys without losing context across all digital touchpoints.
Advantages of Low Code Process Automation Software
By leveraging low code, your enterprises can:
Achieve Faster Go-to-market
Low code helps to significantly cut the time it takes to design business applications. Its user-friendly and intuitive drag-and-drop functionality and reusable application components fast-tracks the application design process. This enables you to rapidly develop and bring to market complex business applications in a short period.
Reduce IT Shadow
Low code process automation software empowers your users with a collaboration-driven work environment and helps eliminate the reliance on third-party applications for quick IT fixes. It provides you the governance capability and guardrails (set by IT) without hindering innovation, thereby helping remove data, process, and security vulnerabilities.
Optimize IT Cost
You can leverage low code to seamlessly integrate on-premise systems with modern cloud-based applications, thereby reducing the upfront migration costs. Furthermore, the platform offers scalability and fosters innovation in less time through an optimum IT headcount.
Oversee Efficient App Governance
Low code will allow your IT and DevOps teams to manage a portfolio of apps with complete compliance and governance capabilities. It will help reduce a significant amount of time spent in application and data governance activities, thereby boosting productivity.
Deliver Delightful Customer Experiences
With low code, you will be able to seamlessly integrate multiple services and deliver continuous improvements to end-users. This results in significantly improved and consistent experiences across several channels.
Takeaway
“By 2024, low-code application development will be responsible for more than 65% of application development activity.” – Gartner
By investing in a low code process automation software, you can optimize your existing enterprise-wide resources, foster a conducive environment for continuous innovations, and sustainably drive digital transformation to achieve your long-term strategic objectives.
Recent Comments